

NORAH - Noise-Related Annoyance, Cognition and Health

Effects of aircraft noise on mental health

Seminar on Aircraft Noise and Mental Health, 4th July, Westminster

Dirk Schreckenberg

ZEUS GmbH
Centre for Applied Psychology,
Environmental and Social Research

D-58093 Hagen, Germany

Co-authors: 43 scientists from 11 institutions (universities, research organizations, consulting companies)

Agenda

Introduction:

- Background
- Work packages of the NORAH study
- Conceptional model
- Annoyance, health-related quality of life (NORAH WP1)
 - Study design
 - Results on annoyance
 - Results on self-reported mental well-being
- Health risks: Depression (NORAH WP2)
 - Study design
 - Results on risk of developing depression
- Conclusions

Background #1:

ZEUS

History of Frankfurt Airport expansion

1997 **Announcement:** Request of airport expansion. 4th runway, 200'000 additional flights p.a.

1998 - 2000

Mediation group. One of the agreements:

Night flight ban between 11pm - 5am after opening of the 4th runway

2001 - 2007

Regional Planning and Zoning Procedures

- Construction of the new runway Northwest
- 17 flights 11pm 5am; 133 flights 10-11pm, 5-6am
- → Public debate: 'violation of mediation agreements

04/2011

NORAH Study - commissioned by the

- 12/2015

Environment & Community Center (UNH),

a wholly-owned subsidiary of the federal state of Hessen

10-11/2011

4th runway opened & night flight ban introduced

(ban: voluntary till 03/2012, court decision confirms in 03/2012)

Work-Packages of the NORAH study

Conceptual Model: Stress model

Surveys in NORAH WP 1 referring primarily to aircraft noise

Stratified random sample within 40 dB $L_{day}/_{night}$ contours Telephone interviews (optional: online)

- annoyance, disturbances
- health-related quality of life (physical, mental)
- non-acoustical factors
- socio-demographic

Acoustical calculations L_{pAeq} , L_{den} , L_{Amax} , NA_x

- aircraft
- railway
- road traffic according to German noise calculation models

Study	Airport	2011	2012	2013	Sample N
Panel	Frankfurt	x	X	X	3 508 taking part in all waves
Cross- sectional	Berlin-Brandenburg	4 th runw	X		5 548
	Cologne/Bonn		-	X	2 955
	Stuttgart	night curfew		X	1 979

Results

FRA Panel:

Change in continuous sound levels 2012 – 2011

2011: Range in $L_{pAeq,24hrs}$: $36 - 61 \, dB$

L_{pAeq,24hrs} has changed mostly between

± 2 dB

Outliers are between

 $\pm 6 dB$

Extreme values between ± 14.5 dB

$$\leq$$
 35 – 57 dB

 $L_{night (10pm-6am)}$ has changed mostly between

± 2 dB

Outliers are between

 $\pm 6 dB$

Extreme values betw.

± 12-13 dB

%HA at Frankfurt Airport: NORAH 2011–13 versus RDF 2005

%HA -

ZEUS

all NORAH airports versus RDF 2005

CGN = NORAH - Cologne/Bonn

BER = NORAH - Berlin-Brandenburg

STR = NORAH - Stuttgart

RDF = Aircraft Noise Study, Frankfurt, 2005

DNL vs EU % HA estimation

FRA: Aircraft noise annoyance 2011 – 2013

Method: Multiple Indicator Latent Growth Curve Models (LGCM)

Groups of change in exposure $(L_{pAeq,24hrs})$ 2012 versus 2011

'Decrease > 2 dB' (15%)

'Stable ± 2dB' (74%)

'Increase > 2 dB' (11%)

Annoyance in 2012/13 a little bit *lower* than expected

Annoyance in 2012 slightly <u>higher</u> than expected, in 2013 mixed

Annoyance in 2012/13

<u>higher</u>

than expected

FRA: Aircraft noise annoyance 2011 – 2013

Results of LGCM: Factors influencing the change in aircraft noise annoyance

FRA 2011 – 2013: Mental well-being (MCS) as assessed with standardized SF8 questionnaire

- Judgments of health-related quality of life (HQoL) refer to ...
 - General health,
 physical functioning and role, bodily pain,
 vitality, social functioning, emotional role, mental health
- The judgments are summarized to two scores:
 - MCS mental component summary

- PCS physical component summary
- Analysis:
 - In statistical models (regressions) the scores MCS and PCS were linked to adress-related sound levels for aircraft, road traffic, and railway noise.
 - Models were adjusted for mode of survey, gender, age, period of residence, hours out of home, house ownership, socio-economic status, migration background, noise sensitivity, BMI, exercise, sound levels other transportation modes.

FRA 2011 – 2013: Mental well-being (MCS) as assessed with standardized SF8 questionnaire

 Correlation between sound level and MCS rather low, BUT:

... particularly in Group 'Increase in L_{pAeq,24hrs}

 ... mental well-being decreased with increasing sound levels

Annoyance mediates the association between sound level and self-reported HQoL (MCS, PCS)

Mental well-being - MCS -

Physical well-being - PCS -

Changes in mental well-being since opening of the new runway

- Changes in mental well-being follows changes in noise annoyance
- The (indirect) relationship between sound levels and mental health is generally weak,

but ...

- ... gets stronger after the opening of the new runway in the group suffering from an increase in aircraft noise exposure after runway opening.
- It seems that noise becomes relevant for mental health particularly when the noise situation worsen.

Case-control study on health risks at Frankfurt Airport (Seidler et al., 2015)

- Analysis of health insurance data
 ('claims' data) on ambulant and inpatient
 diagnoses from 2006 to 2010.
- Partly supplemented by survey among with insurants (individual risk faktors)
- Linked with address-related average and maximum sound levels for aircraft, road traffic, railway noise from 1996 – 2005
- In total: **1 026 658 insurants** aged ≥ 40 years
- **Depression**: 77 295 insurants
- Analysis of noise-related health risks:
 - Logistic regression with sound levels
 - adjusted for age, gender, education, occupation, social status (aggregated insurance data).

Association between transportation noise and depression

• Aircraft: Inversed 'U'-shaped:

8,9% increase in risk of depression per 10 dB in $L_{pAeq,24hrs}$, but decrease in higher sound level classes.

• Road: 4,1% increase per 10 dB in $L_{pAeq,24hrs}$.

• Rail: Inversed 'U'-shaped:

3,9% increase in risk of depression per 10 dB in $L_{pAeq,24hrs}$, but decrease in higher sound level classes.

Depression and aviation noise

Depression and road noise

Depression and railway noise

Source: Seidler et al. (2015); http://www.laermstudie.de/fileadmin/files/Laermstudie/NORAH_Knowledge_12.pdf

Recent studies about transportation noise and depression

Heinrich Nixdorf Recall Study Orban et al., 2016

Baseline (2000 - 2003) and 5-yrs-follow-up of ongoing HNR Health study in Ruhr Region, Germany

Figure 2. Relative risks and 95% confidence intervals of high depressive symptoms at follow-up in association with exposure to different categories of 24-hr noise compared with the lowest noise category [\leq 55 dB(A); n=1,986], adjusted for baseline age, sex, education, income, economic activity, neighborhood-level socioeconomic status, and traffic proximity (Model 1). dB(A), A-weighted decibels.

Depressive symptoms (after baseline)

- CES-D
- antidepressant medication

vs. modelled L_{den} – road traffic

Gutenberg Health Study GHS (Beutel et al., 2016)

Cross-sectional data from cohort study in Rhine-Main region (Mainz), Germany, 2007 – 2012

Degression: PHQ-9

Anxiety: GAD-7

Noise annoyance: ICBEN 5-point

Conclusions

Conclusions #1

- Exposure-response curves for aircraft noise annoyance against L_{pAeq} moved highter up since RDF-Studie 2005
 - Partly a 'change' effect due to the airport expansion
 - Partly a general trend in time?
- Aircraft noise annoyance is associated mental health:
 Higher annoyed people report less mental well-being
 (similar for road traffic and railway noise).
- Correspondingly, in NORAH and other recent studies an association between transportation noise and the risk of developing a depression was found.
 - > Linearity of the relationship is unclear.

Conclusions #2

Non-acoustical factors

Physical health

Noise mitigation

- Information
- Consultation
- **Participation**

Thank you very much for your attention!

Any questions?

Dirk Schreckenberg +49 2331 4787 194 schreckenberg@zeusgmbh.de