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A B S T R A C T

Passenger demand for air transportation is expected to continue growing into the future. The
increase in operations will undoubtedly lead to an escalation in harmful carbon dioxide emis-
sions, an adverse effect that governing bodies have been striving to mitigate. The International
Air Transport Association has set aggressive environmental targets for the global aviation in-
dustry. This paper investigates the achievability of those targets in the US using a top-down
partial equilibrium model of the aviation system complemented with a previously developed fleet
turnover procedure. Three ‘enablers’ are considered: aircraft technologies, operational im-
provements and sustainable biofuels. To account for sources of uncertainty, Monte Carlo simu-
lations are conducted to run a multitude of scenarios. It was found that the likelihood of meeting
all targets is extremely low (0.3%) for the expected demand growth rates in the US. Results show
that biofuels have the most impact on system CO2 emissions, responsible for an average 64% of
the total savings by 2050 (with aircraft technologies and operational improvements responsible
for 31% and 5%, respectively). However, this impact is associated with high uncertainty and very
dependent on both biofuel type and availability.

1. Introduction

The prospects of the US commercial aviation sector remain positive with a long-term outlook of growth, driven by US and world
economies. According to the International Civil Aviation Organization (ICAO), the aviation industry has been reporting strong growth
performance as it continues to recover from the recent economic recession (ICAO, 2015). Worldwide air traffic reached a record
3.53 billion passengers in 2015, up 7% from 2014 and 30% from 2010 (ICAO, 2015). This current trend of aviation growth is
expected to continue in the future. In order to accommodate the increase in air traffic, the worldwide passenger fleet size is projected
to double by 2035 (Boeing, 2016; Airbus, 2016). In the US, air carrier operations are expected to increase from an average of 37000
flights per day in 2015 to 65000 by 2035 (FAA, 2016a). Without intervention, this huge number of additional flights will likely
increase pressure on the US National Airspace System (NAS). The NAS is anticipated to become congested and delays are likely to
propagate throughout. Environmental consequences include an escalation in harmful nitrogen oxide (NOx) and carbon dioxide (CO2)
emissions, and an increase in noise levels near airports (NASA, 2013). Aviation fuel consumption in the US is forecast to rise
approximately 40% by 2035 relative to 2010 levels (FAA, 2016a).

In order to mitigate the adverse environmental impacts of operational growth, and to enhance the overall efficiency and safety of
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the NAS, the US —through its Federal Aviation Administration (FAA)— has invested heavily in the Next Generation Air
Transportation System (NextGen). From 2010 to 2016, total expenditures on NextGen programs amounted to 6.31 billion dollars
(DOT, 2016). The various programs seek to transform the current NAS by improving its operational capacity, efficiency, and resi-
lience (FAA, 2018). Alongside the FAA efforts, the National Aeronautics and Space Administration (NASA) has been investing in the
development of technologies that will either enable the implementation of NextGen or enhance the environmental performance of
commercial aircraft (Table 1) (NASA, 2017). From 2010 to 2016, total expenditures on NASA aeronautics research totaled
3.98 billion dollars (NASA, 2016). NASA has set forth an implementation plan to guide its aeronautics research along six strategic
thrusts that will enable a sustainable, efficient, safe, and autonomous future for aviation (NASA, 2015).

Globally, the International Air Transport Association (IATA) has defined high-level targets to address the projected increase in
aviation-related CO2 emissions. Those targets include a cap on carbon growth starting 2020 and a reduction of 50% in net carbon
emissions by 2050 relative to 2005 levels. In September 2009, the IATA targets were endorsed by the aviation industry including
aircraft manufacturers, airlines, airports, and air navigation service providers. At the 37th ICAO assembly in October 2010, gov-
ernments resolved to adopt the targets as well (ICAO, 2010). Additionally, IATA has laid out a strategy that relies on new technology,
efficient operations, effective infrastructure, sustainable biofuels, and economic measures4 to enable its environmental vision (IATA,
2013). The whole aviation community, including ICAO member states, adopted the strategy as a guiding framework to achieve the
aggressive targets.

Since the US is an ICAO member state, the 2010 resolution imposed additional requirements on domestic aviation investments to
meet the global targets. While the US has invested billions of dollars in transforming its aviation sector, and future research com-
mitments are expected to be of comparable figures, it still remains unclear whether the aviation environmental targets will be met. In
fact, the near term target of achieving an average fuel efficiency improvement of 1.5% per year from 2009 to 2020, has not been met
yet. Data reported by the Bureau of Transportation Statistics (BTS) show that the average US fuel efficiency improvement from 2009
to 2015 was approximately 0.7% per year (fuel efficiency metric being available seat miles per gallon) (BTS, 2015a). Furthermore,
the mid term target of carbon neutrality starting in 2020 continues to be challenging given current improvement trends. In 2015, an
FAA study concluded that carbon neutral growth will not be achieved with moderate system improvements (USG, 2015). The slow
progress towards the targets has raised many concerns regarding the US aviation investment strategy.

At the request of the US Congress, the National Research Council (NRC) formed a committee to report on the status of NextGen
and examine the technical activities related to its implementation. The report severely criticized the FAA for its management of
NextGen, and emphasized that the current implementation strategy seeks an evolutionary upgrade of the NAS rather than the
originally promised revolutionary transformation (NRC, 2015). The NRC report echoed previous warnings by the Inspector General of
the US Department of Transportation who has been following the progress of NextGen closely (Scovel, 2013, 2014). Even more
alarming is the 2015 study conducted by the FAA itself, which showed that NextGen improvements would contribute very little
towards achieving the environmental targets, and that almost all savings in CO2 emissions would come from vehicle technologies and
sustainable biofuels (USG, 2015). Despite the previous research findings, the allocation of investment resources over the past few
years has been skewed in favor of operational improvements. The aforementioned constitutes a basis to at least consider alternative
investment strategies.

While the NRC report called on the FAA, US Congress, and all NAS stakeholders to “reset expectations” for NextGen, this paper
investigates resetting the US aviation investment strategy altogether. By leveraging recent publications to set an upper limit on
operational benefits, this study investigates how much is required from the other ‘enablers’ (technologies and biofuels) for the US to
meet the IATA targets. Aircraft fuel consumption goals set by NASA (Table 1) are used for bench-marking. This work incorporates a
complete fleet turnover model that accounts for aircraft retirements and replacements to examine numerous technology introduction
scenarios in a probabilistic manner through Monte Carlo simulations. Uncertainties in aviation demand and fuel price are accounted
for in the simulations, and the aviation system is assumed to seek partial equilibrium on a yearly basis. The primary research
objectives are to investigate scenarios that meet the IATA targets, and to analyze the expected contributions from vehicle technol-
ogies, operational improvements, and sustainable biofuels.

Table 1
NASA targeted improvements in aircraft metrics (NASA, 2017).

Technology benefits Near term Mid term Far term
2015–2025 2025–2035 Beyond 2035

Noisea 22–32 dB 32–42 dB 42–52 dB
LTO NOx emissionsb 70–75% 80% >80%
Cruise NOx emissionsc 65–70% 80% >80%
Aircraft fuel consumptionc 40–50% 50–60% 60–80%

a Reduction in cumulative margin below FAA Stage 4 noise limit.
b Reduction relative to ICAO CAEP/6 standard.
c Reduction relative to 2005 best in class.

4 Unlike the other solutions, economic measures do not aim to directly limit aviation emissions, but rather to offset them. At the 39th assembly in October 2016,
ICAO resolved to implement the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) as a global market-based measure (ICAO, 2016). Under
CORSIA, aircraft operators of ICAO member states will be required to offset CO2 emission units based on their annual fuel consumption.
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2. Methods

Performance of the US aviation system has been the subject of several previous works. Some studies focused on evaluating the
impact of vehicle technologies (check for example Hollingsworth et al. (2008), Jimenez et al. (2012)) while other studies focused on
evaluating the impact of operational improvements (check for example Palopo et al. (2007), Graham et al. (2009), Marais et al.
(2012)). More recent studies attempted to assess the feasibility of the CO2 emission targets by accounting for multiple enablers
including vehicle technologies, operational improvements and sustainable biofuels, (check for example Kar et al. (2009), USG (2015),
Schäfer et al. (2016)). Nevertheless, these works only considered a limited number of scenarios based on assumptions regarding
technology introduction and biofuel availability. In this study, a probabilistic assessment that considers a multitude of scenarios is
conducted instead. Three types of enablers are accounted for: technologies, operations, and biofuels (infrastructure enhancements are
assumed operational benefits whereas economic measures are not considered). Technologies and operations reduce the environ-
mental impact by enhancing aviation fuel efficiency, while biofuels provide emissions savings through production life cycle. The
modeling methods utilized for the three enablers are described in the following subsections.

2.1. Assumptions

All general assumptions in this study pertain to the aviation system as a whole and are commonly accepted in the literature, as
will be shown.

• Aviation CO2 emissions are computed on a life cycle basis.
Previous studies have shown that aircraft combustion CO2 emissions do not vary much, regardless of the type of fuel being used
(conventional fossil fuels result in the emission of 73.2 gCO2/MJ during combustion compared to 70.4 gCO2/MJ for most biofuels)
(Stratton et al., 2010). Unlike conventional fuels however, biofuels offer ‘biomass credits’ during production that could potentially
offset the combustion emissions. Therefore, in order to encompass the full environmental benefits of biofuels, a ‘well-to-wake’ life
cycle analysis should be conducted. This assumption was utilized in previous works by Stratton et al. (2010) and the FAA (USG,
2015).

• Aviation CO2 emissions are directly proportional to fuel burn.
In the literature, CO2 emissions and fuel burn are consistently related through a direct proportionality (CO2 ∝ FB ⇒ CO2= κ · FB).
In this paper, the proportionality constant κ refers to the amount of ‘well-to-wake’ life cycle CO2 emitted from the consumption of
a unit amount of fuel. Reference κ values for various types of fuels are determined through experimentation and are routinely
published by Argonne National Laboratory (ANL, 2014). This assumption was utilized in previous works by Stratton et al. (2010)
and Hassan et al. (2015a).

• Aviation system achieves partial equilibrium.
For a preset passenger load factor, aviation supply is assumed to meet aviation demand such that the system is in economic
equilibrium. In this study, the impact of the aviation industry on other markets of the US economy is not considered and thus,
general equilibrium is not guaranteed. Supply/capacity is measured in terms of available seat miles (ASM), while demand/traffic
is measured in terms of revenue passenger miles (RPM). This assumption was utilized in previous works by Hofer et al. (2010) and
Winchester et al. (2013).

• Aviation system performance is driven by passenger transport.
Historical performance of the NAS indicates that passenger transport is responsible for 86% of aviation system fuel consumption,
with the remaining 14% primarily due to cargo operations (BTS, 2015b). While the share of cargo transport is not insignificant, it
has been consistently declining since 2005. It is thus assumed that passenger transport will remain the dominant driver of aviation
system performance and therefore, cargo operations are not accounted for. This assumption was previously utilized by Krammer
et al. (2013).

Besides the aforementioned, assumptions specific to the modeling methods discussed next will be stated and justified as they arise.

2.2. Aviation system representation

Fig. 1 provides a representation of the aviation system based on top-down airline economics (Belobaba et al., 2009). Since this
study is focused on aviation carbon emissions, specific emphasis is given to fuel consumption relative to other cost drivers. Simply,
passenger demand for commercial aviation dictates the amount of air traffic and hence, fuel use. Fuel cost is an important driver of

Fig. 1. Block diagram representation of the aviation system.
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airline operating cost, which in turn influences ticket price. The latter then feeds back to passenger demand, closing the system loop.
The six main system blocks are related through six factors, as shown in Fig. 1. By definition, system load factor is the ratio of demand
to capacity. Capacity, along with a system-wide metric representing fuel efficiency, determines system fuel consumption. The fuel
efficiency metric is computed in terms of available seat miles per gallon using a bottom-up analysis, as will be explained later. Fuel
cost is calculated based on consumption and a given unit price. Accordingly, total airline operating cost is determined given a
predefined fuel fraction. The ‘pass-through’ metric acts as a valve that controls how much change in operating cost is reflected in
ticket price. It takes on non-negative values with zero indicating a fixed ticket price regardless, and positive values indicating that
changes in cost alter ticket price (typical pass-through values are close to unity). Last, price elasticity translates any change in ticket
price to an inverse change in demand. This is the only negative relationship in the system feedback loop and thus, is the one that
guarantees system convergence towards equilibrium.

Partial equilibrium of the aviation system, as represented in Fig. 1, is posed as an optimization problem with the following
objective function and bound constraints:

= +

⩾

− −( )fminimize (ASM , ASM )

subject to ASM , ASM 0

D I

D I

(RPM ASM ·LF )
ASM ·LF

(RPM ASM ·LF )
ASM ·LF

D D D
D D

I I I
I I

2 2

(1)

where LF is load factor and subscripts D and I represent domestic and international terms, respectively. Clearly, the function seeks to
match aviation supply and demand such that partial equilibrium is achieved. All system factors, except for fuel efficiency, are
predefined and fixed for every iteration. The fuel efficiency metric is dependent on fleet growth as dictated by ASM and therefore, is
recomputed every function call.

2.3. Modeling vehicle technology impact

The fuel efficiency metric of Fig. 1 is a single value that represents the efficiency of the entire fleet in terms of system available
seat miles divided by system fuel consumption (ASM/Gallon). The reciprocal of this metric is fuel intensity (η) defined as:
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where indices i and j represent aircraft types and system routes (origin-destination pairs), respectively. This value can be easily
calculated for any system with known fleet composition and network structure. However, in this study, the goal is to track the
performance of the NAS for future years in which both fleet and network are uncertain (i.e., the goal is to calculate system fuel
consumption based on efficiency and not the contrary). Forecasting fleet and network changes is beyond the scope of this study,
although previously investigated by the authors (Jimenez et al., 2012; Hassan and Mavris, 2014). Instead, the FAA forecast as-
sumption of 1.0% annual improvement in ASM/Gallon is used to establish a base trend (FAA, 2016a). By leveraging a fleet turnover
model that was developed by the authors and demonstrated in previous works (Jimenez et al., 2012; Hassan et al., 2015b), this trend
is adjusted to account for the introduction of advanced aircraft technology. The model accounts for future fleet retirements and
replacements and outputs the number of aircraft by type based on fleet growth, while preserving vehicle class proportions (i.e., no
fleet distortion).5 Accordingly, fuel intensity is approximated as follows:

∑≈η
η

α ω
[total no. of aircraft]

· ·[no. of aircraft]
i

i i i
FAA

AC

(3)

where α is a relative fuel intensity factor and ω is a normalized weighting. Aircraft types are categorized by seating capacity and
engine category into seven vehicle classes: Turboprop (TP), Regional Jet (RJ), Small Single Aisle (SSA), Large Single Aisle (LSA),
Small Twin Aisle (STA), Large Twin Aisle (LTA), and Very Large Aircraft (VLA). Within each class, aircraft types are assigned α values
based on fuel consumption such that =α 1 represents current state-of-the-art aircraft, ⩾α 1 represents older aircraft, and ⩽ ⩽α0 1
represents novel aircraft (e.g., in the STA class, the Boeing 787 is assigned =α 1 while the Boeing 767 is assigned >α 1). Alter-
natively, ω values are assigned to aircraft types to account for their respective contributions to system capacity. Without those
weightings, η would be solely influenced by the number of aircraft of each type, which is not necessarily indicative of capacity share.

Eq. (3) updates the FAA prediction using the fleet’s weighted average relative fuel intensity ( ≈η α η· FAA), as determined by the
fleet turnover model. This approximation implies that if all old aircraft in the fleet are retired and/or replaced by the current state-of-
the-art, the system fuel efficiency will match that of the FAA, which is reasonable since ηFAA is derived from business as usual
efficiency improvement trends. Furthermore, Eq. (3) assumes that η is primarily driven by fuel consumption (α ) and not capacity.
This is a justifiable assumption given that the FAA estimates a very slow progression (<0.5% per year) in both seats per aircraft mile

5 Vehicle class proportions are assumed constant for a number of reasons. First, aerospace forecasts do not predict a future fleet composition that is considerably
different from the current one (Boeing, 2016; Airbus, 2016; FAA, 2016a). Second, in order to accommodate fleet distortions, an algorithmic logic that allows vehicle
classes to grow at different rates and aircraft from different classes to replace one another would have to be implemented. This would increase the model’s com-
putational complexity significantly. Finally, there is a potential for an overall efficiency gain or penalty from allowing unconstrained fleet distortions. As mentioned in
Section 1, a primary focus of this study is to quantify and isolate the impacts of the different environmental solutions on system CO2 emissions. Such isolation of
impacts would not be possible if fleet distortions are permitted since the resulting efficiency gain or penalty would play a role in determining future system trends.
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and passenger trip length, the averaged quantities of the first two terms of Eq. (2) (FAA, 2016a). Because number of operations is also
not a factor since it affects both capacity and fuel consumption proportionally, fuel burn can be assumed the sole driver of η.

2.4. Modeling operational efficiency impact

Unlike vehicle technologies, the impact of many operational improvements on system fuel consumption cannot be directly
identified and/or measured. This is because the improvements primarily target alternative system metrics such as safety and resi-
lience, with fuel savings being a secondary benefit. The FAA estimates a total reduction in fuel use of 2.80 billion gallons through
2030 due to improvements in US air traffic management (FAA, 2016c). This is compared with a projected cumulative fuel con-
sumption of 352.63 billion gallons during the same time period (FAA, 2016a). An earlier 2013 study estimated potential system-wide
fuel savings of 5–9% by accounting for improvements in not only air traffic management, but also ground and airline operations
(Hileman et al., 2013). Given the low magnitude of the expected benefits, and the complexity associated with quantifying indirect
impacts, operational improvements are not handled in great detail in this study. Their impact is modeled through an additional factor
applied to Eq. (3) such that system fuel intensity is approximated as follows:

≈η α β η· · FAA (4)

where β is a relative fuel intensity factor. System efficiency benefits from operational improvements are accounted for using
⩽ ⩽β0 1 values. Additionally, a lower limit of =β 0.9 (i.e., 10% efficiency gain) is enforced, consistent with recent literature

findings (Hileman et al., 2013).
Eq. (4) assumes that the benefits of operational improvements are not independent from vehicle technologies. Due to com-

pounding, the same β value can result in different operational efficiency gains based on the value of α . An alternative form of Eq. (4)
that assumes both impacts independent would be: ≈ + −η α β η( 1)· FAA. For ⩽α 1, the latter is a conservative estimate of η since

⩾ + −α β α β( · ) ( 1). If ⩾α 1 however, Eq. (4) is more conservative. Investigating the interaction between technologies and operations
is beyond the scope of this paper, but since the β values are small, it is argued that the difference − + −α β α β|( · ) ( 1)| is small. For all
subsequent analyses, Eq. (4) is used to estimate system fuel intensity.

2.5. Modeling biofuel impact

Both technologies and operations reduce CO2 emissions by enhancing system fuel efficiency. Biofuels however, reduce emissions
through life cycle biomass credits and therefore, their impact cannot be captured through η. The benefits of biofuels are alternatively
determined based on quantities consumed. System fuel consumption is first computed from available seat miles and fuel efficiency
( =−η ASM/Gallon1 ):

=
= +

ηFB ASM·
FBC FBB (5)

where FBC and FBB are the quantities of conventional jet fuel and biofuel, respectively. Biofuel availability is predefined and dictates
both FBC and FBB. System CO2 emissions are then derived from fuel burn based on emission factors (proportionality constants), as
previously discussed in Section 2.1:

= +κ κCO ·FBC ·FBBc b2 (6)

where κc and κb are the emission factors of conventional jet fuel and biofuel, respectively. The environmental benefits of biofuels are
accounted for using those factors where, in many cases, >κ κc b and the net reduction in system CO2 emissions due to biofuels is

−κ κ( )·FBBc b . Eqs. (5) and (6) incorporate the impacts of all three enablers considered in this work and thus, are used for subsequent
system performance evaluations.

Modeling biofuel impact as described above implicitly assumes that biofuels are equivalent to conventional jet fuel (in terms of
energy content), and that availability is the only constraint preventing their full adoption by the aviation industry. However, there are
several other constraining factors that have not been accounted for (Gegg et al., 2014). One such factor is the higher production cost,
and hence the higher sale price, of biofuels as compared to conventional jet fuel. This difference in fuel price is not considered
beforehand when seeking equilibrium of the aviation system. Although those constraints have not been modeled directly (partially
due to the lack of available data), the uncertainty in biofuel impact is captured indirectly through Monte Carlo simulations.

3. Calculation

As mentioned in Section 1, the main research objective is to investigate the feasibility of the IATA targets. To do so, a framework
was developed to evaluate system CO2 emissions, utilizing the methods detailed in Section 2 to account for the impacts of all enablers.
The framework projects system performance for future years based on the operational fleet of the last historical year, which gets
updated on a yearly basis using the fleet turnover model. Furthermore, it utilizes aviation and energy forecasts to compute system
factors required for the aviation system model to converge. Last, it relies on user inputs to set the remaining factors needed to
complete the evaluation procedure. The following subsections detail the different elements of this framework.
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3.1. Baseline fleet

The US operational fleet of 2015 is the system baseline fleet, and is determined based on historical data published by the BTS.
Specifically, the T-100 database is used to identify operational aircraft types, and their respective system capacity shares
(∀ ∈ =k ωAC: ASM /[total ASM]k k ) (BTS, 2015a). Piston aircraft, helicopters and business jets are filtered out and not accounted for.
Remaining aircraft types are categorized into the seven vehicle classes discussed earlier. Within each class, α values are determined
using the T-2 database that not only summarizes traffic data in the T-100, but also includes fuel data
(∀ ∈ =k αAC: [ASM/gallon] /[ASM/gallon]k kin-class

best- ) (BTS, 2015b). Aircraft counts are established using the BTS aircraft inventory
reported in schedule B-43 (BTS, 2015c). This schedule is also used to establish age distributions for all aircraft types, which are
required as input to the fleet turnover model. For the purposes of this framework, the previous information sufficiently defines the
baseline fleet.

3.2. Aviation and energy forecasts

The FAA 2016–2036 aerospace forecast is used to derive ηFAA and a reference fuel price trend, along with initial estimates for ASM
and RPM. Beyond 2036, trends are exponentially extrapolated to 2050. While forecast values for ηFAA are fixed throughout the
analysis, the ASM and RPM time series are scaled according to demand growth rate (RPṀ), which is a user input. The scaled ASM
trend is then used as a first guess for the system optimization problem (Eq. (1)). In its baseline forecast, the FAA assumes a reference
RPṀ of 2.6% per year. However, it complements that figure with an optimistic value of 2.8% per year. Other aerospace forecasts
predict even higher growth rates of 3.1–3.4% per year (Boeing, 2016; Airbus, 2016). Given the previous, an upper bound is enforced
on growth rate such that ∈RPṀ [0.0, 3.4]. Fig. 2 shows the reference and bound trends of RPM.

Similarly, the 2016 annual energy outlook published by the US Energy Information Administration (EIA) is used to provide upper
and lower jet fuel price trends that account for uncertainty in oil price (EIA, 2016). The outlook includes projections to 2040, beyond
which trends are linearly extrapolated to 2050. Another resource utilized is the 2016 billion-ton report prepared for the US De-
partment of Energy (DOE) by Oak Ridge National Laboratory (DOE, 2016). The report includes multiple projections for biomass
availability based on different biomass prices. The trends corresponding to $40/ton, $60/ton and $80/ton were used to establish the
lower, reference and upper trends of biomass availability, respectively. Available biofuel is then computed under the assumption that
a third of the biomass would be converted to biofuel at a conversion efficiency of 45 gallons per ton, an assumption that was recently
utilized by the FAA in a 2015 study (USG, 2015). Fig. 2 shows the reference and bound trends of fuel price and available biofuel.

3.3. User inputs

User inputs define system parameters such as load factor, fuel fraction, pass-through and price elasticity, and specify the values of
bounded variables such as those shown in Fig. 2. While values for parameters are predefined and fixed using literature findings,
values for bounded variables are assigned randomly within Monte Carlo simulations in order to handle associated uncertainties. All
framework inputs are summarized in Table 2.

System load factor is determined using the FAA aerospace forecast. The FAA predicts that load factor plateaus for both domestic
(0.86) and international (0.82) air travel such that the system load factor is 0.85 (FAA, 2016a). The baseline fuel fraction of airline
operating cost is assumed 0.3 (30%) based on airline cost data reported by major airlines, which showed fuel fraction in 2014 and
2015 to be 0.333 and 0.264, respectively (Ferjan, 2016). Within the model, fuel fraction varies according to fuel price and fleet
efficiency such that operating costs in every future year relative to the baseline are calculated as follows:

= + −α βrel. OC 1 FF·((rel. FP· · ) 1) (7)

where OC is operating costs, FF is the baseline fuel fraction and FP is fuel price. This approximation was introduced by the authors in
a previous publication and validated against hisorical data (Pfaender et al., 2012).

Similarly, pass-through is set to 1.0 (100%), in agreement with prior studies that investigated airlines’ response to cost changes
under competitive market conditions (Gillen, 2009; Vivid, 2007). Price elasticity, defined as the percent change in market demand in
response to a 1% change in ticket price, is based on estimates published by Gillen et al. (2003). Gillen et al. empirically estimated
price elasticity ranges for different short-haul/long-haul, business/leisure, and domestic/international market segments. The median
price elasticity values were as follows:

(8)

where B, L, D and I stand for business, leisure, domestic and international, respectively. The median values shown in Eq. (8) are used
in this study. In addition, it is assumed that 72% of all US flights are short-haul (<1500 statute miles) and that 42% of passengers are
traveling for business, according to historical trends (BTS, 1995, 2015a).

Another parameter that needs to be specified is the average aircraft age for retirement. It is used within the fleet turnover model
and represents the age at which an aircraft is 50% likely to be retired from service. Curves published by the ICAO Committee on
Aviation Environmental Protection (CAEP) and Boeing were used to estimate that parameter (ICAO, 2007; Jiang, 2013). The em-
pirically derived curves plot the probability an aircraft survives retirement versus age for different aircraft types. A logistic function of
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the following form was used for curve fitting:

= −
+ −

L t
a t c

( ) 1 1
1 exp(( )/ ) (9)

where a and c are the function’s location and scale parameters, respectively. To fit the CAEP ‘All Others’ curve, the values for a and c
were: =a 31.5 and =c 4. In this case, the location parameter a corresponds to the average aircraft age for retirement and thus, its
value of 31.5 years is used as reference.

Finally, emission factors κc and κb are determined based on values of well-to-wake life cycle emissions by Stratton et al. (2010)
derived from data published by Argonne National Laboratory (ANL, 2014). Stratton et al. calculated life cycle emissions in units of
gCO2/MJ. For conventional jet fuel produced from crude oil, that value was 87.5. Accordingly, κc was calculated as follows:

= × × × =κ 87.5
gCO
MJ

43.2 MJ
kg

0.802
kg
L

3.785 L
gal

11474
gCO
galc

2 2

(10)

where the heating value (in MJ/kg) and density (in kg/L) of conventional jet fuel are those used by Stratton et al. For biofuels, several
estimates for life cycle emissions are available depending on the type of fuel and the process used to produce it. Accordingly, based on
fuel paths that led to savings in life cycle emissions, κb values ranged from zero to 0.65 κ· c. In this study, κb is assumed κ0.25· c in line
with estimates provided by Stratton et al. (2010) for the production of Fischer-Tropsch jet fuel from biomass. This assumption was
previously utilized by the FAA (USG, 2015).

3.4. Evaluation procedure

Unlike parameters, variables are not predefined. Instead, their values are generated randomly through Monte Carlo simulations,
as mentioned in the previous subsection. The bounds for all variables are shown in Table 2. Two probability distributions are

Table 2
Framework input parameters and variables.

Parameter Value Variable Bounds

Load factor (–) 0.85 Vehicle fuel intensity α [0.1, 1.0]
Fuel fraction (–) 0.3 Operational fuel intensity β [0.9, 1.0]
Pass-through (–) 1.0 ABF scaling ϕABF [0.0, 1.0]
Price elasticity (–) Gillen et al. FP scaling ϕFP [0.0, 1.0]
κc (gCO2/gal) 11474 RPṀ scaling ϕRPṀ [0.0, 1.0]

Fig. 2. Reference and bound trends for available biofuel, fuel price and demand growth.
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considered from which variable values are sampled: uniform and triangular. Once variable values are generated, the evaluation
procedure commences seeking convergence of the aviation system shown in Fig. 1 according to the objective function of Eq. (1).
Before detailing the steps involved in that evaluation procedure, it is important to note the difference between the vehicle fuel
intensity α in Table 2 and the α values determined in Section 3.1. The latter values represent the efficiency of different vehicle types
in the baseline fleet. They are derived using historical data and remain fixed throughout the analysis. Alternatively, the α in Table 2 is
a variable that represents the fuel efficiency of future aircraft. It is an array of six values that assigns relative fuel intensity factors to all
replacement vehicles entering service starting 2020:

∈ ∈ − ∈ −
∈ − ∈ − ∈ −

α α α α α α α
α α α α α α α α α

[0. 85, 1. 0] [( 0. 15), ] [( 0. 15), ]
[( 0. 15), ] [( 0. 15), ] [( 0. 15), ]

2020 2025 2020 2020 2030 2025 2025

2035 2030 2030 2040 2035 2035 2045 2040 2040 (11)

where the subscripts indicate the year in which the replacement vehicle is available for introduction to service. Eq. (11) assumes a
continuous progression of fuel efficiency such that new aircraft are at least as efficient as ones introduced five years earlier. It also
assumes that new vehicles can only enter service in specific years in the future, which is a simplifying assumption made for com-
putational purposes. The maximum efficiency gain possible in 2045 is 90% ( =α 0.12045 ),6 in line with the NASA targets shown in
Table 1.

After generating the required variable values, the aviation system of Fig. 1 is repeatedly evaluated using a sequential procedure.
The steps of the evaluation procedure are as follows:

1. Load baseline fleet along with aviation and energy forecasts.
2. Scale forecast reference trends according to input values of ϕ ϕ,ABF FP and ϕRPṀ.
3. Calculate ASM using scaled RPM from step 2 and forecast load factor from step 1.
4. Solve optimization problem of Eq. (1) using scaled ASM from step 3 as an initial guess.
5. Calculate system fuel burn using converged value of ASM from step 4.
6. Calculate system CO2 emissions using system fuel burn from step 5.
7. Repeat steps 2–6 for different input values of α β ϕ ϕ, , ,ABF FP and ϕRPṀ.

The scaling input variables ϕ ϕ,ABF FP and ϕRPṀ are used to scale the reference trends of the forecasts in step 2, where their bound
values of 0.0 and 1.0 correspond to the lower and upper limits in Fig. 2, respectively. In step 4, the fleet turnover model is run at every
iteration to recompute α for every updated guess of ASM. This procedure is computationally implemented in Anaconda 4.2.0
powered by Python 3.5 (check Appendix for pseudocode) (Continuum, 2016). Optimization is based on a Sequential Least SQuares
Programming (SLSQP) algorithm, which is executed using a built-in Python solver (Kraft, 1988; Perez et al., 2012).

4. Results

Two Monte Carlo simulations were conducted, each consisting of 10000 runs. The first simulation sampled all input variables
from uniform/rectangular distributions. Alternatively, the second simulation sampled just the efficiency variables uniformly, and
used triangular distributions to sample the scaling variables (the modes of which were: = =ϕ ϕ0.0, 0.5ABF FP and =ϕ 0.5RPṀ ). While
the first simulation attempted to account for every possible scenario within the bounds of input uncertainty, the second simulation
focused on the more probable scenarios. This was done by skewing variable sampling towards the lower trend of biofuel availability
(to simulate slow biofuel adoption) and the reference trends of fuel price and demand growth (Fig. 2). The simulations were executed
on a machine powered by an Intel® CoreTM i7-2600 processor with 16 GB of RAM. On average, each Monte Carlo run took 30-40 s to
be executed, adding up to a total computational run-time of approximately 8 days.

The resulting contour plots of fuel burn and CO2 emissions are shown in Fig. 3. It is important to note that fuel burn contour plots
are equivalent to those of ‘zero-biofuel’ CO2 emissions (from Eqs. (5) and (6), if =FBB 0, then =FB FBC and = κCO ·FBc2 ). Fig. 3
therefore signifies that a reduction of 50% in net carbon emissions by 2050 relative to 2005 levels (third IATA target), cannot be
achieved without biofuels. In addition, fuel burn results suggest that carbon neutral growth (second IATA target) while possible
without the utilization of biofuels, is hard to achieve starting 2020 as intended. Nevertheless, CO2 emissions contour plots show that
both IATA targets are achievable with the adoption of biofuels, especially the second target of carbon neutrality.

Overall, uncertainty bounds increase into the future for both simulations with the all-uniform simulation having a lower mean and
higher variance. Both simulations show a clear peak just above 100% for 2016–2017, which then fades away as uncertainty grows.
For the all-uniform simulation, a distinct collection of results appears at 15–20% CO2 emissions by 2045–2050. Those results are due
to scenarios that combined low demand growth rates with high biofuel amounts and therefore, they do not appear in the second
simulation in which sampling was skewed towards higher demand growth and lower biofuel availability. Fig. 4 further illustrates that
the likelihood of meeting all IATA targets decreases by half from 0.49 for the all-uniform simulation to 0.24 for the second simulation.

Scenarios that met all IATA targets were investigated more closely. As mentioned earlier, those scenarios were characterized by
low demand growth rates (Fig. 5) and high biofuel availability, along with high fuel prices that helped suppress demand (Fig. 6).
Regardless of the input sampling distributions, the histograms of Figs. 5 and 6 are clearly skewed towards low RPṀ values, and high

6 In order to achieve an α value of 0.1 by 2045, the code would have to sample the maximum efficiency gain of 15% for all future vehicles such that:
[ = = = = = =α α α α α α0.85; 0.7; 0.55; 0.4; 0.25; 0.12020 2025 2030 2035 2040 2045 ]. Although theoretically possible, this sampling scenario is extremely improbable.
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ϕABF and ϕFP values. The skewness of the histograms also identify RPṀ as the dominant factor affecting CO2 emissions. This is
significant since recent projections suggest RPṀ to be in the range of [2.6, 3.4]. For ⩾RPṀ 2.6, the likelihood of meeting all IATA
targets drops to approximately zero. Even for moderate growth rates of ⩾RPṀ 1.0, most scenarios required excessive amounts of
biofuel and high fuel prices (Fig. 6). As for vehicle efficiency, results indicate that α had a secondary impact on scenarios that met the
targets. The histograms of Fig. 7 resemble the expected distributions from uniformly sampling Eq. (11), with some skewness towards
higher α values, especially for the second simulation. Similarly, resulting β histograms imply that operational efficiency had minimal
impact on scenarios that met all targets.

5. Discussion

The results of Section 4 show that socioeconomic factors (ϕRPṀ and ϕFP) have a clear and strong impact on the environmental
performance of the aviation system. While the role of biofuels (ϕABF) in mitigating the consequences of such impact can be easily
deduced from Fig. 3, the role of technologies and operations (α and β) to reduce system fuel burn cannot be directly inferred. To
quantify the fuel burn reduction due to technologies, the two Monte Carlo simulations were re-run with the same values of β ϕ, FP and
ϕRPṀ, but with α set to zero. The net impact of α is thus computed as the difference in fuel burn results between the original
simulations and the =α 0 simulations ( = = − =ΔCO ΔFB FB FBα α α2, MC MC, 0). Similarly, in order to determine the net impact of β, the
two Monte Carlo simulations were re-run using the same values of ϕFP and ϕRPṀ, but with both α and β set to zero
( = = −= = =ΔCO ΔFB FB FBβ β α α β2, MC, 0 MC, 0). Contour plots of CO2 emissions reduction due to α β, and ϕABF are shown in Fig. 8.

The α plots of Fig. 8 indicate that vehicle technologies have a gradual impact on system CO2 emissions, with modest reductions in
the near future. This is because of the slow fleet turnover where newly introduced, more efficient vehicles require time to replace a
considerable number of older, less efficient ones. Hence, there exists a time lag between the input vehicle efficiency gain α and the
resulting system efficiency gain η. Fig. 8 illustrates that, on average, the rate of CO2 emissions reduction due to α (− tΔ(ΔCO )/Δα2, )
increases from 0.2%/year 2016–2030 to 1.0%/year 2030–2050. The plots also show that in both simulations, α has a similar impact
on CO2 emissions with slightly increased reductions, on average, for the second simulation, in which demand growth rates were

Fig. 3. Contour plots of system fuel burn and CO2 emissions for two Monte Carlo simulations (left: uniform sampling of all variables; right: uniform
sampling of efficiency variables and triangular sampling of scaling variables; mean trends overlaid in red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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higher. This slight increase in system efficiency can be attributed to the fact that all additional vehicles required to meet higher
demands are new vehicles of higher efficiency.

Alternatively, as emphasized in the β plots of Fig. 8, operational improvements have an overall modest impact on system CO2

emissions. This result was expected since an upper limit was enforced on β beforehand, based on literature findings. Unlike α β, does
not have a gradual impact that intensifies with time, but instead has an immediate effect on CO2 emissions reduction. This is because
β is modeled as an overall improvement factor that directly affects system fuel efficiency (Eq. (4)).

Finally, the ϕABF plots of Fig. 8 demonstrate the significant impact of biofuels on system CO2 emissions. Despite the high mag-
nitudes of |ΔCO |2 , primarily due to the assumption that =κ κ0.25·b c, the mean impact of ϕABF is associated with larger ± |ΔCO |2

bounds due to the high uncertainty in biofuel availability. Similar to operational improvements, biofuels have a prompt impact on the
system as a whole. This impact continues to grow into the future as biofuel availability increases. Fig. 8 shows that in both simu-
lations, ϕABF has a similar impact on CO2 emissions with decreased reductions, on average, for the second simulation, in which biofuel
availability was lower.

Based on the impacts of α β, and ϕABF, the overall reduction in system CO2 emissions is determined by summing the individual
contributions from all enablers. The mean trends of Fig. 8 are used to generate the stacked bar plot of Fig. 9. The latter re-emphasizes
the potential of biofuels to reduce emissions in the near term, and that of vehicle technologies in the far term. Relative impacts of the
enablers ( ∑ΔCO / ΔCOi i i2, 2, ) vary throughout the forecast period, although biofuels remain of the most impact.

6. Conclusions

Demand for air transportation is expected to grow into the future. This growth is associated with adverse environmental impacts
that include an escalation in fuel burn and CO2 emissions. To mitigate those impacts, IATA outlined a technology roadmap that
includes three main targets: 1] 1.5% per year improvement in fuel efficiency from 2009 to 2020, 2] carbon neutral growth starting
2020, and 3] 50% reduction in CO2 emissions by 2050 relative to 2005 levels. Recent data show that there is a slow progress towards

Fig. 5. Histograms of RPṀ for scenarios that met all IATA targets (left: uniform sampling of all variables; right: uniform sampling of efficiency
variables and triangular sampling of scaling variables; sampling distributions overlaid in red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Cumulative distribution function of system fuel burn and CO2 emissions in 2050 for two Monte Carlo simulations (left: uniform sampling of
all variables; right: uniform sampling of efficiency variables and triangular sampling of scaling variables).
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Fig. 6. Overlaid histograms of ϕABF and ϕFP for scenarios that met all IATA targets (left: uniform sampling of all variables; right: uniform sampling of
efficiency variables and triangular sampling of scaling variables; sampling distributions overlaid in red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Histograms of normalized α values for scenarios that met all IATA targets (left: uniform sampling of all variables; right: uniform sampling of
efficiency variables and triangular sampling of scaling variables; sampling distributions overlaid in red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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those targets, despite huge investments in various efforts. This study was to investigate scenarios that meet the IATA targets, and to
analyze the expected contributions from technologies, operations and biofuels.

To account for different sources of uncertainty, Monte Carlo simulations were conducted. Results showed that in order to meet all
IATA targets, biofuels must be utilized. Results also showed that the likelihood of meeting the targets is highly dependent on demand
growth rate. Scenarios that met the targets relied heavily on biofuels, and less so on technologies and/or operations. An analysis of
the individual enabler contributions found that while biofuels have the most impact, they are associated with a lot of uncertainty.
Alternatively, technologies were found to have a gradual impact that intensifies in the future, after higher efficiency vehicles are
allowed time to penetrate the fleet.

Fig. 8. Contour plots of system CO2 emissions reduction due to α β, and ϕABF for two Monte Carlo simulations (left: uniform sampling of all
variables; right: uniform sampling of efficiency variables and triangular sampling of scaling variables; top: α; middle: β; bottom: ϕABF; mean trends
overlaid in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The aforementioned analysis leads to a number of key observations. First, the likelihood of achieving the third IATA target is
extremely low for the projected demand growth rates of ⩾RPṀ 2.6. In order to meet this target, additional enablers (such as
economic measures) need to be considered. Second, technologies and operations will combine for only 36% of total CO2 emissions
savings by 2050. Given huge investments into those two enablers over the last 1.5 decades, it is important to study alternative
resource allocation strategies. Third, although biofuels have a huge potential to reduce the environmental consequences of demand
growth, a lot of uncertainty exists around their adoption by the aviation industry. Issues such as production costs need to be ef-
fectively tackled in order for their full potential to be realized.
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Appendix A. Appendix

Algorithm 1 presents a pseudocode of the evaluation procedure discussed in Section 3.4.

Algorithm 1

Input: α β κ κ ϕ ϕ ϕ, PE (array); , , , , , , FF, PT (scalar)c b ABF FP RPṀ

Output: CO2(time series)
procedure

load baseline fleet
load aerospace and energy forecasts
function ScaleForecastsϕ ϕ ϕ, ,ABF FP RPṀ

← f ϕABF ( , ABF , ABF , ABF )ABF ref min max ▷available biofuel

← f ϕFP ( , FP , FP , FP )FP FAA min max ▷fuel price

← f ϕRPṀ ( , RPṀ , RPṀ , RPṀ )RPṀ FAA min max ▷demand growth rate

calculate RPMscaled
end function

←rel. FP FP/FPFAA ▷relative fuel price
←ASM RPM /LFscaled FAA ▷initial guess

procedure SystemEquilibrium(ASM) ▷SLSQP solver
repeat

←growth ASṀ
procedure FLEETTURNOVER(growth)

calculate retirements
calculate replacements
return no. of aircraft by type

Fig. 9. Stacked bar plot of overall system CO2 emissions reduction based on mean trends – error bars represent ± 1 standard deviation.
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end procedure
calculate α

← + −α βrel. OC 1 FF·((rel. FP· · ) 1) ▷relative operating cost
← +rel. TP 1 PT·rel. OC ▷relative ticket price

← + ⊗ − +rel. RPM (1 PE ((rel. TP 1)/(rel. TP 1)))/
− ⊗ − +(1 PE ((rel. TP 1)/(rel. TP 1))) ▷relative demand

←RPM rel.RPM·RPMscaled

calculate f ▷objective function
update ASM

until ⩽ ∊f ▷∊ ≈ 0
return αASM,

end procedure
← α β ηFB ASM·( · · )FAA ▷system fuel burn

if ⩽FB ABF then
←FBC 0
←FBB FB

else
← −FBC FB ABF
←FBB ABF

end if
← +κ κCO2 ·FBC ·FBBc b ▷system CO2 emissions

return CO2
end procedure

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.trd.2018.06.
006.
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